using System;
using L=Science.Physics.GeneralPhysics;
namespace Serway.Chapter22
{
///
/// Example11: Adiabatic Free Expansion - One Last Time
/// Let us verify that the macroscopic and microscopic
/// approaches to the calculation of entropy lead
/// to the same conclusion for the adiabatic free
/// expansion of an ideal gas. Suppose that an ideal
/// gas expands to four times its initial volume.
/// As we have seen for this process, the initial and
/// final temperatures are the same.
/// (A) Using a macroscopic approach, calculate the entropy
/// change for the gas.
/// \Delta S = n R ln 4
/// (B) Using statistical considerations, calculate the change
/// in entropy for the gas and show that it agrees with the
/// answer you obtained in part (A).
/// \Delta S = n R ln 4
///
public class Example11
{
public Example11()
{
}
private string result;
public string Result
{
get{return result;}
}
public void Compute()
{
L.Entropy S = new L.Entropy();
double N = L.Constant.AvogadroConstant;
S.NumberOfMicrostates = 4.0;
result = Convert.ToString(N*S.JPERK)+"\r\n";
result += Convert.ToString(1.0*L.Constant.UniversalGasConstant*Math.Log(4.0))+"\r\n";
}
}
}
//11.5222063082141
//11.5256513183508