using System; using L=Science.Physics.GeneralPhysics; namespace Serway.Chapter15 { /// /// Example04: Oscillations on a Horizontal Surface. /// A 0.500 kg cart connected to a light spring for which /// the force constant is 20.0 N/m oscillates on a horizontal, /// frictionless air track. /// (A) Calculate the total energy of the system and the maximum /// speed of the cart if the amplitude of the motion is 3.00 cm. /// E = 9 \times 10^{-3} J /// v_{max} = 0.19 m/s /// (B) What is the velocity of the cart when the position /// is 2.00 cm? /// v = \pm 0.141 m/s /// (C) Compute the kinetic and potential energies of /// the system when the position is 2.00 cm. /// K = 5 \times 10^{-3} J /// U = 4 \times 10^{-3} J /// public class Example04 { public Example04() { } private string result; public string Result { get{return result;} } public void Compute() { L.SimpleHarmonicMotion shm = new L.SimpleHarmonicMotion(); shm.Mass = 0.5; shm.SpringForceConstant = 20.0; shm.Amplitude = 0.03; //(A) result+=Convert.ToString(shm.TotalEnergy)+"\r\n"; shm.FindAngularFrequencyOfMassSpringSystem(); result+=Convert.ToString(shm.VelocityMaximum)+"\r\n"; //(B) L.Time t = new L.Time(); t.s = Math.Acos(0.02/0.03)/shm.AngularFrequency; result+=Convert.ToString(shm.Velocity(t))+"\r\n"; //(C) result+=Convert.ToString(shm.KineticEnergy(t))+"\r\n"; result+=Convert.ToString(shm.PotentialEnergy(t))+"\r\n"; } } } /* 0.009 0.189736659610103 -0.14142135623731 0.005 0.004 */