using System; using L=Science.Physics.GeneralPhysics; namespace Serway.Chapter07 { /// /// Example11: A Block-Spring System /// A block of mass 1.6 kg is attached to a horizontal that /// has a force constant of 1.0 \times 10^3 N/m, as shown Figure 7.10. /// The spring is compressed 2.0 cm and is then released from rest. /// (A) Calculate the speed of the block as it passes through /// the equilibrium position x=0 if the surface is frictionless. /// v_f = 0.5 m/s /// (B) Calculate the speed of the block as if passes through /// the equilibrium position if a constant friction force of /// 4.0 N retards it motion from the moment it is released. /// v_f = 0.39 m/s /// public class Example11 { public Example11() { } private string result; public string Result { get{return result;} } public void Compute() { double k = 1.0*1000.0; // spring constant L.Mass m = new L.Mass(); m.kg = 1.6; L.Displacement d = new L.Displacement(); d.X = 0.02; //(A) L.Work W = new L.Work(); W.J = 0.5*k*d.m*d.m; L.KineticEnergy ki = new L.KineticEnergy(); ki.J = 0.0; L.KineticEnergy kf = new L.KineticEnergy(); kf.VariableQ = true; L.FundamentalLaw.WorkEnergyTheorem(ki,W,kf); L.Velocity vf = new L.Velocity(m,kf); result += Convert.ToString(vf.Norm)+"\r\n"; //(B) L.Work WB = new L.Work(); WB.J = -4.0*d.X; L.Work[] Wp = new L.Work[2]; Wp[0] = W; Wp[1] = WB; L.KineticEnergy kfB = new L.KineticEnergy(); kfB.VariableQ = true; L.FundamentalLaw.WorkEnergyTheorem(ki,Wp,kfB); L.Velocity vfB = new L.Velocity(m,kfB); result += Convert.ToString(vfB.Norm)+"\r\n"; } } } //0.5 //0.387298334620742